
Jump Drive MFD V1.0 Page 1

ORBITER
Jump Drive MFD V1.0

Friedrich Kastner-Masilko
September 20th 2006

1. INTRODUCTION... 2
2. OVERVIEW ... 2
3. DOCUMENT HISTORY... 2
4. INSTALLATION... 3
5. CONCEPT... 3
6. MFD MODE USAGE ... 6
8. LIMITATIONS.. 9
9. CHECKLISTS.. 9
10. FAQ ... 9

Jump Drive MFD V1.0 Page 2

1. INTRODUCTION

This Orbiter module provides hyper-jump capabilities for every vessel in your scenario. To make
traveling with a jump-drive more challenging, the jumping distance is fixed (although adjustable via INI
file). Therefore, to get near your target, you have to think about the course of the jump. The integrated
navigation computer helps you with this task.

This work basically made me relax a little from OMP and build up some MFD-creating skills. Don’t take
it (the plugin, the code and this documentation) too seriously. Have fun!

2. OVERVIEW

Based on the ideas of ZCochrane1, a member of the Orbiter forums, this MFD equips every vessel in
your Orbiter environment with the ability to instantly jump over huge distances. Although this is nothing
new to Orbiter (there are several MFDs doing this job), this jump drive is quite different: the jump
length can not be set arbitrary!

The simulated jump drive is claimed to work as follows2:
• Mass from any fuel resource in your vessel can be used to charge up so called “capacitor cells”

through “Mr. Fusion”. Unfortunately, “Mr. Fusion” doesn’t work the other way round. Once you
filled the cells, you can’t use them for anything else than jumping.

• Each kilogram of fuel loads your cell with a fixed percentage. This way, fuel consumption is linear
over filled cells.

• The jump engine itself (“Flux-Capacitor”) uses the charged cells to build up a bursting warp
bubble, causing the vessel to jump incredible distances through space in the direction it is pointing
in the blink of an eye.

• The more cells the engine can use, the more far your jump will be. Luckily, hyperspace physics
are non-linear, so your jump length will grow exponential over filled cells. Unfortunately, only full
cells can be used, because only harmonic energy levels result in bursting warp bubbles.

• In spite of the instantious jump itself – looking like a big explosion for observers – the complete
jumping procedure takes about 14 seconds. During this time, the “Flux-Capacitor” builds up the
warp bubble, causing your vessel to accelerate like crazy and the space around you to warp even
crazier.

• After the jump the vessel decelerates again, bringing the vessel back to relativistic (in case of
sane vessels and pilots: newtonian) physics. Your kinetic energy is preserved, so you have to use
your main engines to get into an appropriate orbit around a target object.

Due to the implicit discrete jump length, the jump drive needs a more sober navigator than any other
FTL system. You don’t want to jump right into Jupiter’s core by accident, believe me…

To learn more about the theory of jump drive navigation and the famous Z-formulas3, please take a
look at section 5. The usage of the MFD is described in section 6.

3. DOCUMENT HISTORY

Version 1.0
 September, 20th 2006 – Release documentation.

1 Quote from Harmsway! in http://orbit.m6.net/Forum/default.aspx?g=posts&t=7886 : „And who better to be the creator of a
warp drive for orbiter then ‚ZCochrane’“ ...no more comments needed...
2 Some of the terms in this description may cause you to think they are stolen from the movie „Back to the Future“... ridiculous...
Think about it: on one hand you have a simple jump drive, on the other there is a time(!) machine built into a DeLorian(!). Now,
what’s the real one???
3 ZCochrane was the first to come up with a formula for jump drive navigation. Although his work only took equidistant jump
drives into account (and many outcries from mathematicians like ”This is just plain trigonometric, you fools!!!”), many jump drive
researchers and engineers refer to the set of formulas regarding jump drive navigation as “Z-formulas” in honor of the man that
first build this creepy travel system out of dust-covered jump gates.

Jump Drive MFD V1.0 Page 3

4. INSTALLATION

Extract the archive with your Orbiter folder as base folder and be sure to enable the “use path
information” feature of your favorite extraction tool.
You should then have:

<OrbiterFolder>\Config\hyperspace.cfg Configuration file for hyperspace fake vessel
<OrbiterFolder>\Doc\JumpDriveMFD.pdf This documentation
<OrbiterFolder>\Meshes\hyperspace.msh Mesh for hyperspace fake vessel
<OrbiterFolder>\Modules\Plugin\JumpDriveMFD.dll JumpDriveMFD plugin
<OrbiterFolder>\Scenarios\JumpDriveShow.scn Showcase scenario
<OrbiterFolder>\Sound\JumpDriveMFD*.wav Sound files for OrbiterSound3 support
<OrbiterFolder>\Orbitersdk\samples\JumpDriveMFD* Source code
<OrbiterFolder>\JumpDriveMFDReadme.txt Installation instructions

There is no configuration file (INI) in the distribution, because it will be generated from scratch.

5. CONCEPT

The jump drive is a pretty straight forward thing to use. Fill it up, point where you want to go and
jump…
The problem is to jump to a specific location in space, though. Due to the fixed jump length (although
somewhat selectable by the amount of filled cells) you can’t just point into the direction of your target
and go, because you either fall short of your target or simply overshoot it most of the time.
Additionally, the jump drive is no magic “Standard orbit, Mr. Sulu”-device. Your velocity vector w.r.t.
the target object AFTER the jump is the same as BEFORE the jump.

Fortunately, the described problems are solvable by math, summarized in the so-called Z-formulas,
which will be described in the following section.

Definitions:

If we think about the problem of getting to a
target by fixed-length jumps (FLJs), the 2-jump
solution quickly comes to mind. I.e., the “last
mile” in a stutter-jump journey with FLJs always
needs 2 jumps to reach the exact position of the
target.

The figure to the left shows the 2-jump solution
in generalized 3D space. You can make out the
vessel, the target, the jump trajectories and the
observation plane.

The Euclidean distance from vessel to target has
length c and the corresponding vector defines
the x-dimension of the observation plane. a is the
length of the first jump trajectory and b is the
length of the second one. The plane spawn by
the triangle a-b-c is perpendicular to the
observation plane.

If the x-y plane is used for projection of this 3D
constellation, a 2D model of the problem can be
defined. This way, the calculation of the angle
between the direct course to the target and the
needed derivation of the first jump (depicted as
alpha) can be calculated more easily.

Target (planet)

Vessel (space craft)

Trajectories

Observation plane

Jump Drive MFD V1.0 Page 4

As alpha was the interesting angle regarding position w.r.t. the target, the elevation is the one
regarding velocity. The elevation is the angle between the velocity vector w.r.t. the target and the
surface plane. The later is the y-z plane as shown in the figure below.

As you can see, a vector pointing towards the target gives a negative elevation, whereas pointing
away from the target gives a positive one.

Of course, both picture’s x-y plane must match. I.e., for the simplification of both models to work, the
chosen direction of the first jump must lie in the same plane as the velocity vector.

The following formulas represent analytical solutions for various simplified models. Note: angle alpha
from above figures is named β

�
 in the formulas due to trigonometric standard notation, elevation is

abbreviated with ε� .

Z-formula 1 (original) – equidistant jumps:

If we assume equidistant jumps, the angle can be solved
by:

2

,

2
cos c

a

Rca

a

c

≥

∈∀
=

+

β

Note: if β

�
 is near 60° , you may reach your target with a

single jump!

Z-formula 2 (extended) – generalized jump length:

General FLJ-angles can be solved by using the cosine
sentence:

1cos1

,,

2
cos

222

≤≤−
∈∀+−= +

β
β

Rcba

ac

cba

As you can see, the possible length of each jump is
limited. If we take the exponential scaling of the jump
drive into account, the possible range of filled cells for the
second jump can be described as follows:

Surface plane

Vessel (space craft)

Velocity vector

Target (planet)

Jump Drive MFD V1.0 Page 5

With j being the jump length with a single filled cell and s
being the scaling factor, x is the amount of additional filled
cells for the first jump, y the amount for the second. Then
y must lie within the given range. If it is impossible to find
a solution for y (because of the range limits or the amount
of available cells for the drive), the target can not be
reached with the specified first jump length.

Z-formula 3 – horizontal velocity:

The generalized Z-formula is already sufficient, if you want to jump directly into Jupiter’s core… Maybe
someone is considering that, but most of the time you want to jump into some kind of orbit around a
planet. Then we have to take the velocity vector into account. As described above, we assume the
velocity vector to lie in the same plane as our planed jump trajectory. If the elevation of the vector is
nearly horizontal, we can use the following simplified model to calculate the needed course deviation:

k as the destination factor depends on the target’s mass M, the
velocity v w.r.t. the target and the estimated distance ∆

�
 from the

target after the jump.

With the destination factor and the elevation, the distance specific radius R solves to

() ()
()

() ()
1

1490sin

12

90sin14 2222

2,1 ≠
−−≤−

−
−−−−±−=

k

kk

k

kkk
R

εε

with 2 solutions for R (one with the positive square root result, one with the negative).

Multiplying both solutions with the estimated
distance gives you the values for the
resulting orbit’s periapsis Rper and Rapo
apoapsis:

∆= 1RRper ; ∆= 2RRapo

With the sum, you can calculate the semi-
major axis of the orbit’s shape:

()
221

∆+= RRsmaj

Even the eccentricity can be derived from the
R solutions:

1
22

1
21

2

21

1 +
+

=
+

−=
RR

R

RR

R
e

If the resulting shape is not acceptable (e.g. if Rper is below the targets ground level), you must start
with a new estimated distance. Once the shape is acceptable, calculate the FLJ-angles according to
the extended Z-formula.

Z-formula 4 – vertical velocity:

Z-formula 3 can only calculate nearly horizontal (0° to 45°) velocity vectors efficiently. If you have a
more vertical vector, the following model is better suited, but still less accurate.

Please note, that the elevation depicted in the following figure has a negative value, since it points
towards the target. The simplified model only works with a velocity vector pointing this direction. If you
have a positive (nearly vertical) elevation, just mirror the trajectories over the x-axis.

0,

,
lnln

Nyx

Rsj

jsb

jsa

j

ca
y

j

ca y

x

ss

∈
∈

=

=

 +≤≤

 −

+

11-2 106.67259

,2

⋅=

∈∆
∆

= +

G

Rv

v

GM
k

Jump Drive MFD V1.0 Page 6

To get the angle δ� for the deviation of the
second jump, use

180sinarcsin2 −

+= βεδ

b

a

You will then have an offset to the target
midpoint of

2
sin2

δ
b=∆

With this and the fact, that the new elevation
at the new endpoint is zero, you can

calculate your final orbit’s shape by using Z-formula 3.

Best practice:

Since hyperspace physics is somewhat inaccurate today, don’t do too much math with your
approaches. Use the navigation computer’s modes to calculate your FLJ according to Z2 as exact as
possible and guess your final jump to get into a more or less stable orbit.
As you gain skills you can plan your approaches with Z3 and Z4, but it is not necessary for quick tours
around the solar system. Just don’t ignite Jupiter…

6. MFD MODE USAGE

The behavior of the MFD mode can be summarized as follows:

• The MFD mode for jump drive control is called “JumpDrive” and the activation key is ‘J’. Activate

the mode as described in the Orbiter manual.

• Every vessel in the scenario gets it’s own independent jump drive instance that can be controlled

from every MFD inside the vessel. Therefore, concurrently jumping vessels are possible.

• Every MFD instance (standard MFD and ExtMFD) stores the information for the JumpDrive mode

executed in it. I.e., all your navigation computer settings won’t be shared between MFDs. So you
can e.g. target different objects in different MFDs.

• Every command can be engage either by button press or shortcut. If OrbiterSound3 is installed, a

positive acknowledgment is expressed by a clicking sound, a negative one by a high pitched tune.

• Only vessels NOT docked to a superstructure can engage a jump. Of course, during the jump

procedure it is possible to accidentally “catch” a superstructure. A docked structure going into
hyperspace causes structures to vaporize (attachments work fine, though). Try it out…

Navigation computer layout:

The following page describes the layout and button functions of the MFD mode.

Jump Drive MFD V1.0 Page 7

Shortcut
key

Description Remarks

S Select distance

Opens a dialog where you can enter the distance and cell amount
for the 2nd jump for calculation of course derivation according to Z2.
Distance and cells are separated by comma, distance can be left
out if you just want to change cell amount and vice versa.

U Set to current Set distance to current target distance and switches the navigation

computer mode to Target distance.

M Change display

mode Rotates navigation computer display mode.

N Next target
Selects next target by increasing the object index. Normally, Orbiter
enumerates planets and moons first, then vessels. Bases or
navaids are not enumerated.

P Previous target Selects previous target by decreasing the object index.

T Select target Opens a dialog for selecting of target object by name.

C Charge up cell Starts capacitor cell charging.

D Decrease index
Decrements fuel source index. If the index was 1, fuel input is
switched off. If fuel was switched off, the index will be set to the
maximum index available.

I Increase index
Increments fuel source index. If the index was the maximum
available index, fuel input is switched off. If fuel was switched off,
the index will be set to 1.

F Select fuel index Opens a dialog for selecting the fuel source index.

A Fleet jump
command

Automatically sets the same course and engages the jump for all
vessels within command range if their capacitor is ready.

J Engage jump Engages the jump if capacitor is ready.

Information description Drive information Cell level indicator

Navigation computer information

Jump Drive MFD V1.0 Page 8

Navigation computer modes:

The following table describes the available computer modes in the rotation order.

Mode Description

Target size Displays the target object’s size in meters. If the target is a celestial object, the size is the object’s

radius. This information can be used for Z3 and Z4 calculations or eye-balled approaches.

Target mass Displays the target object mass in kilograms. This information can be used for Z3 and Z4 calculations.

Target distance Displays the distance to the target object’s core in meters.

Course offset Displays the offset in meters to the destination point (the one with zero deviation), if the jump occurs

with the current course deviation. Useful in the last jump to avoid collisions.

Course deviation Displays the offset in degrees from pointing towards the target object’s core.

Deviation needed Displays the offset in degrees needed for the first FLJ for the given distance selected according to Z2.

Deviation offset Displays the offset between current and needed derivation. Use it to set your course according to Z2

calculation.

Relative velocity Displays the velocity vector length w.r.t the target in m/s. This information can be used for Z3 and Z4

calculations.

Velocity elevation Displays the angle between the surface plane and the velocity vector in degrees (0=orbital velocity

vector, -90=pointing towards target, +90=pointing away from target). This information can be used for
Z3 and Z4 calculations.

X-Y(pitch)alignment Helps you with aligning X-Y planes of velocity and course model. Set course towards the target, roll

until the angle is zero, then pitch up until your course deviation is as calculated in Z3 and Z4,
respectively. The calculations are only valid as long as the plane angle (shown in emphasis) is close to
zero.

Jump drive parameters:

The jump drive MFD mode can be adjusted in it’s behavior regarding memory and cell management
as well as effect and feature settings. These parameters can be set in an appropriate INI file. It is
located in the /Modules/Plugin/ folder and will be generated from scratch - if not present - by the plugin
with the following default values:

[Sizes]
Drives=4 = 2^Drives=Size of the internal drives hash
MDFs=4 = 2^MDFs=Size of the internal MFD hash

[Effects]
JumpVelocity=5.000000e+004 = Acceleration/Deceleration velocity offset
 [m/s] for jump effect
FlashOffset=1.000000e+001 = Position of the flash effect from the
 camera viewpoint [m]

[Settings]
ClassName=S C O U T = Drive class name
Capacitors=5 = Capacitors available
CellCapacity=6.000000e+003 = Capacity of one cell [kg]
CellReloadTime=1.000000e+001 = Loading time of one cell [s]
JumpRange=7.500000e+008 = Jump range of one cell [m]
JumpRangeScaling=1.000000e+001 = Range scaling factor

[Features]
FleetRange=1.000000e+005 = Range of fleet jump command [m]

Jump Drive MFD V1.0 Page 9

8. LIMITATIONS

If you encounter any problems, please feel free to post them on the Orbiter forums or email it to me
(face@snoopie.at). At this point I know of two problems, that I have not investigated far enough to
provide a solution for:

• MFD sounds don’t play if you didn’t start the scenario with the MFD activated in any of the
standard MFDs of the focused vessel. Take a look at the showcase scenario for the
appropriate lines to copy.

• Sounds don’t play if you missed the event of state change. I.e., if you have the focus on one
vessel while another one is jumping and you switch focus to the jumping one, you might miss
the point where state switches from hyperspace transition to deceleration. You won’t hear the
deceleration sound in this case, although the visual effects show up.

9. CHECKLISTS

This chapter will give you step-by-step instructions to operate the showcase scenario to get an idea of
the module’s features.

External viewpoint:

1. Make sure to install the package properly.
2. Start Orbiter and activate the JumpDriveMFD in the Modules tab of the launchpad.
3. Start the JumpDriveShow scenario located in the root of the scenario folder.
4. You’re in the ISS, therefore clicking on JMP or CHG will give you the no-no-sound. Use F3 to

switch to Jumper1 (Atlantis near ISS).
5. Click CHG to charge up the first capacitor cell. You should here a pumping sound, if you have

OrbiterSound3 installed. Switch to external view and rotate it to get the earth into view.
6. As soon as the pumping sound stops, hit Left-Shift-J to engage the jump. Note the FOV

transition and acceleration…
7. After the big bang, rotate the external view to look into the direction the nose is pointing.

Switch back to internal view and click TGT.
8. Enter “earth” and press ENTER. Click the <> button to set the current distance to the target.

Press the MOD button until the mode name reads “Course deviation”.
9. Pitch up until you have a sufficient rotation speed. Watch the mode reading. As soon as it

goes to around 10° , consider pressing KILLROT to stop your rotation. Try to get the mode
reading as low as possible.

10. Press the CHG button and switch to external view again. As soon as the sound stops (i.e., the
cell is filled), hit Left-Shift-J to jump.

Cockpit viewpoint:

11. Use F3 to switch to Jumper2. Use CHG to charge up the cell.
12. Switch to internal view and use F8 to change to the virtual cockpit.
13. As soon as the cell is filled, press JMP to engage the jump.

Observer viewpoint:

14. Use F3 to switch to Jumper3. Use CHG to charge up the cell. Switch to external view and
rotate it to see the front of the vessel.

15. Use F3 again to open the selection window, but don’t select one or close it.
16. Press JMP to engage the jump. Use the selection window to switch to Jumper2 immediately.
17. Watch Jumper3 coming out of hyperspace.

10. FAQ

This chapter gives answers to frequently asked questions.

Q: I can’t find the JumpDriveMFD.ini, where is it?
A: The INI-file is not deployed with the distribution. It will be generated from scratch by the module on
shutdown, so just activate the module in Orbiter, close it again and it should be in /modules/plugin/.

